Modified differential evolution algorithm with onlooker bee operator for mixed discrete-continuous optimization
نویسندگان
چکیده
For solving non-linear programming problems containing discrete and continuous variables, this article suggests two modified algorithms based on differential evolution (DE). The two proposed algorithms incorporate a novel random search strategy into DE/best/1 and DE/cur-to-best/1 respectively. Inspired by the artificial bee colony algorithm, the random search strategy overcomes the searching unbalance of DE/best/1 and DE/cur-to-best/1 by enhancing the global exploration capability of promising individuals. Two numerical experiments are given to test the two modified algorithms. Experiment 1 is conducted on the benchmark function set of CEC2005 in order to verify the effectiveness of the improved strategy. Experiment 2 is designed to optimize two mixed discrete-continuous problems to illustrate the competitiveness and the practicality of the proposed algorithms. In particular, the modified DE/cur-to-best/1 finds the new optima of two engineering optimization problems.
منابع مشابه
Multi-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect
This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance. First the problem is encoded with a...
متن کاملAn improved artificial bee colony algorithm for the blocking flowshop scheduling problem
This paper presents an improved artificial bee colony (IABC) algorithm for solving the blocking flowshop problem with the objective of minimizing makespan. The proposed IABC algorithm utilizes discrete job permutations to represent solutions and applies insert and swap operators to generate new solutions for the employed and onlooker bees. The differential evolution algorithm is employed to obt...
متن کاملArtificial bee colony algorithm with multiple onlookers for constrained optimization problems
In this paper we present a modification of artificial bee colony (ABC) algorithm for constrained optimization problems. In nature more than one onlooker bee goes to a promising food source reported by employed bee. Our proposed modification forms a mutant solution in onlooker phase using three onlookers. This approach obtains better results than the original artificial bee colony algorithm. Our...
متن کاملDeterministic and Metaheuristic Solutions for Closed-loop Supply Chains with Continuous Price Decrease
In a global economy, an efficient supply chain as a main core competency empowers enterprises to provide products or services at the right time in the right quantity, at a low cost. This paper is to plan a single product, multi-echelon, multi-period closed loop supply chain for high-tech products (which have continuous price decrease). Ultimately, considering components rated to procurement, pr...
متن کاملBQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...
متن کامل